82 research outputs found

    Tree reconciliation combined with subsampling improves large scale inference of orthologous group hierarchies

    Full text link
    Background: An orthologous group (OG) comprises a set of orthologous and paralogous genes that share a last common ancestor (LCA). OGs are defined with respect to a chosen taxonomic level, which delimits the position of the LCA in time to a specified speciation event. A hierarchy of OGs expands on this notion, connecting more general OGs, distant in time, to more recent, fine-grained OGs, thereby spanning multiple levels of the tree of life. Large scale inference of OG hierarchies with independently computed taxonomic levels can suffer from inconsistencies between successive levels, such as the position in time of a duplication event. This can be due to confounding genetic signal or algorithmic limitations. Importantly, inconsistencies limit the potential use of OGs for functional annotation and third-party applications. Results: Here we present a new methodology to ensure hierarchical consistency of OGs across taxonomic levels. To resolve an inconsistency, we subsample the protein space of the OG members and perform gene tree-species tree reconciliation for each sampling. Differently from previous approaches, by subsampling the protein space, we avoid the notoriously difficult task of accurately building and reconciling very large phylogenies. We implement the method into a high-throughput pipeline and apply it to the eggNOG database. We use independent protein domain definitions to validate its performance. Conclusion: The presented consistency pipeline shows that, contrary to previous limitations, tree reconciliation can be a useful instrument for the construction of OG hierarchies. The key lies in the combination of sampling smaller trees and aggregating their reconciliations for robustness. Results show comparable or greater performance to previous pipelines. The code is available on Github at: https://github.com/meringlab/og_consistency_pipeline

    Pathogenic impact of transcript isoform switching in 1,209 cancer samples covering 27 cancer types using an isoform-specific interaction network

    Full text link
    Under normal conditions, cells of almost all tissue types express the same predominant canonical transcript isoform at each gene locus. In cancer, however, splicing regulation is often disturbed, leading to cancer-specific switches in the most dominant transcripts (MDT). To address the pathogenic impact of these switches, we have analyzed isoform-specific protein-protein interaction disruptions in 1,209 cancer samples covering 27 different cancer types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) project of the International Cancer Genomics Consortium (ICGC). Our study revealed large variations in the number of cancer-specific MDT (cMDT) with the highest frequency in cancers of female reproductive organs. Interestingly, in contrast to the mutational load, cancers arising from the same primary tissue had a similar number of cMDT. Some cMDT were found in 100% of all samples in a cancer type, making them candidates for diagnostic biomarkers. cMDT tend to be located at densely populated network regions where they disrupted protein interactions in the proximity of pathogenic cancer genes. A gene ontology enrichment analysis showed that these disruptions occurred mostly in protein translation and RNA splicing pathways. Interestingly, samples with mutations in the spliceosomal complex tend to have higher number of cMDT, while other transcript expressions correlated with mutations in non-coding splice-site and promoter regions of their genes. This work demonstrates for the first time the large extent of cancer-specific alterations in alternative splicing for 27 different cancer types. It highlights distinct and common patterns of cMDT and suggests novel pathogenic transcripts and markers that induce large network disruptions in cancers

    PaxDb 5.0: Curated Protein Quantification Data Suggests Adaptive Proteome Changes in Yeasts

    Full text link
    The "Protein Abundances Across Organisms" database (PaxDb) is an integrative metaresource dedicated to protein abundance levels, in tissue-specific or whole-organism proteomes. PaxDb focuses on computing best-estimate abundances for proteins in normal/healthy contexts and expresses abundance values for each protein in "parts per million" in relation to all other protein molecules in the cell. The uniform data reprocessing, quality scoring, and integrated orthology relations have made PaxDb one of the preferred tools for comparisons between individual datasets, tissues, or organisms. In describing the latest version 5.0 of PaxDb, we particularly emphasize the data integration from various types of raw data and how we expanded the number of organisms and tissue groups as well as the proteome coverage. The current collection of PaxDb includes 831 original datasets from 170 species, including 22 Archaea, 81 Bacteria, and 67 Eukaryota. Apart from detailing the data update, we also present a comparative analysis of the human proteome subset of PaxDb against the two most widely used human proteome data resources: Human Protein Atlas and Genotype-Tissue Expression. Lastly, through our protein abundance data, we reveal an evolutionary trend in the usage of sulfur-containing amino acids in the proteomes of Fungi

    STITCH 3: zooming in on protein-chemical interactions

    Get PDF
    To facilitate the study of interactions between proteins and chemicals, we have created STITCH, an aggregated database of interactions connecting over 300 000 chemicals and 2.6 million proteins from 1133 organisms. Compared to the previous version, the number of chemicals with interactions and the number of high-confidence interactions both increase 4-fold. The database can be accessed interactively through a web interface, displaying interactions in an integrated network view. It is also available for computational studies through downloadable files and an API. As an extension in the current version, we offer the option to switch between two levels of detail, namely whether stereoisomers of a given compound are shown as a merged entity or as separate entities. Separate display of stereoisomers is necessary, for example, for carbohydrates and chiral drugs. Combining the isomers increases the coverage, as interaction databases and publications found through text mining will often refer to compounds without specifying the stereoisomer. The database is accessible at http://stitch.embl.d

    Systematic assessment of pathway databases, based on a diverse collection of user-submitted experiments

    Full text link
    A knowledge-based grouping of genes into pathways or functional units is essential for describing and understanding cellular complexity. However, it is not always clear a priori how and at what level of specificity functionally interconnected genes should be partitioned into pathways, for a given application. Here, we assess and compare nine existing and two conceptually novel functional classification systems, with respect to their discovery power and generality in gene set enrichment testing. We base our assessment on a collection of nearly 2000 functional genomics datasets provided by users of the STRING database. With these real-life and diverse queries, we assess which systems typically provide the most specific and complete enrichment results. We find many structural and performance differences between classification systems. Overall, the well-established, hierarchically organized pathway annotation systems yield the best enrichment performance, despite covering substantial parts of the human genome in general terms only. On the other hand, the more recent unsupervised annotation systems perform strongest in understudied areas and organisms, and in detecting more specific pathways, albeit with less informative labels

    CanIsoNet: a database to study the functional impact of isoform switching events in diseases

    Full text link
    MOTIVATION: Alternative splicing, as an essential regulatory mechanism in normal mammalian cells, is frequently disturbed in cancer and other diseases. Switches in the expression of most dominant alternative isoforms can alter protein interaction networks of associated genes giving rise to disease and disease progression. Here, we present CanIsoNet, a database to view, browse and search isoform switching events in diseases. CanIsoNet is the first webserver that incorporates isoform expression data with STRING interaction networks and ClinVar annotations to predict the pathogenic impact of isoform switching events in various diseases. RESULTS: Data in CanIsoNet can be browsed by disease or searched by genes or isoforms in annotation-rich data tables. Various annotations for 11 811 isoforms and 14 357 unique isoform switching events across 31 different disease types are available. The network density score for each disease-specific isoform, PFAM domain IDs of disrupted interactions, domain structure visualization of transcripts and expression data of switched isoforms for each sample is given. Additionally, the genes annotated in ClinVar are highlighted in interactive interaction networks. AVAILABILITY AND IMPLEMENTATION: CanIsoNet is freely available at https://www.caniso.net. The source codes can be found under a Creative Common License at https://github.com/kahramanlab/CanIsoNet_Web. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics Advances online

    STITCH 4: integration of protein-chemical interactions with user data

    Get PDF
    STITCH is a database of protein-chemical interactions that integrates many sources of experimental and manually curated evidence with text-mining information and interaction predictions. Available at http://stitch.embl.de, the resulting interaction network includes 390 000 chemicals and 3.6 million proteins from 1133 organisms. Compared with the previous version, the number of high-confidence protein-chemical interactions in human has increased by 45%, to 367 000. In this version, we added features for users to upload their own data to STITCH in the form of internal identifiers, chemical structures or quantitative data. For example, a user can now upload a spreadsheet with screening hits to easily check which interactions are already known. To increase the coverage of STITCH, we expanded the text mining to include full-text articles and added a prediction method based on chemical structures. We further changed our scheme for transferring interactions between species to rely on orthology rather than protein similarity. This improves the performance within protein families, where scores are now transferred only to orthologous proteins, but not to paralogous proteins. STITCH can be accessed with a web-interface, an API and downloadable file

    Fast Genome-Wide Functional Annotation through Orthology Assignment by eggNOG-Mapper

    Get PDF
    Orthology assignment is ideally suited for functional inference. However, because predicting orthology is computationally intensive at large scale, and most pipelines are relatively inaccessible (e.g. new assignments only available through database updates), less precise homology-based functional transfer is still the default for (meta-)genome annotation. We therefore developed eggNOG-mapper, a tool for functional annotation of large sets of sequences based on fast orthology assignments using precomputed clusters and phylogenies from the eggNOG database. To validate our method, we benchmarked Gene Ontology predictions against two widely used homology-based approaches: BLAST and InterProScan. Orthology filters applied to BLAST results reduced the rate of false positive assignments by 11%, and increased the ratio of experimentally validated terms recovered over all terms assigned per protein by 15%. Compared to InterProScan, eggNOG-mapper achieved similar proteome coverage and precision while predicting, on average, 41 more terms per protein and increasing the rate of experimentally validated terms recovered over total term assignments per protein by 35%. EggNOG-mapper predictions scored within the top-5 methods in the three Gene Ontology categories using the CAFA2 NK-partial benchmark. Finally, we evaluated eggNOG-mapper for functional annotation of metagenomics data, yielding better performance than interProScan. eggNOG-mapper runs ∼15x faster than BLAST and at least 2.5x faster than InterProScan. The tool is available standalone and as an online service at http://eggnog-mapper.embl.de

    Version 4.0 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and cell-lines

    Full text link
    Protein quantification at proteome-wide scale is an important aim, enabling insights into fundamental cellular biology and serving to constrain experiments and theoretical models. While proteome-wide quantification is not yet fully routine, many datasets approaching proteome-wide coverage are becoming available through biophysical and MS techniques. Data of this type can be accessed via a variety of sources, including publication supplements and online data repositories. However, access to the data is still fragmentary, and comparisons across experiments and organisms are not straightforward. Here, we describe recent updates to our database resource "PaxDb" (Protein Abundances Across Organisms). PaxDb focuses on protein abundance information at proteome-wide scope, irrespective of the underlying measurement technique. Quantification data is reprocessed, unified, and quality-scored, and then integrated to build a meta-resource. PaxDb also allows evolutionary comparisons through precomputed gene orthology relations. Recently, we have expanded the scope of the database to include cell-line samples, and more systematically scan the literature for suitable datasets. We report that a significant fraction of published experiments cannot readily be accessed and/or parsed for quantitative information, requiring additional steps and efforts. The current update brings PaxDb to 414 datasets in 53 organisms, with (semi-) quantitative abundance information covering more than 300,000 proteins

    STRING v9.1: protein-protein interaction networks, with increased coverage and integration

    Get PDF
    Complete knowledge of all direct and indirect interactions between proteins in a given cell would represent an important milestone towards a comprehensive description of cellular mechanisms and functions. Although this goal is still elusive, considerable progress has been made—particularly for certain model organisms and functional systems. Currently, protein interactions and associations are annotated at various levels of detail in online resources, ranging from raw data repositories to highly formalized pathway databases. For many applications, a global view of all the available interaction data is desirable, including lower-quality data and/or computational predictions. The STRING database (http://string-db.org/) aims to provide such a global perspective for as many organisms as feasible. Known and predicted associations are scored and integrated, resulting in comprehensive protein networks covering >1100 organisms. Here, we describe the update to version 9.1 of STRING, introducing several improvements: (i) we extend the automated mining of scientific texts for interaction information, to now also include full-text articles; (ii) we entirely re-designed the algorithm for transferring interactions from one model organism to the other; and (iii) we provide users with statistical information on any functional enrichment observed in their network
    • …
    corecore